

The emerging value of AI technologies to the transformation of Smart&Sustainable food systems: An assessment methodology for the Lithuanian region

Head of KTU AI centre Agne Paulauskaite-Taraseviciene

25 November 2022

Emerging Technology Trends

The main part of Food system

Six Building Blocks of Smart & Sustainable Food System

Strategy & Policy recommendations

Policy recommendations and strategy documents for the successful deployment of artificial intelligence in food systems.

Development of sustainable mindset

Developing a sustainable mindset within the organization and society, leading to green and environmentally responsible decision-making.

Technological awareness in food sector

Awareness of technology trends and their benefits is essential for their easy adoption in the food market or industry.

Data Management

Correct and systematic data collection is essential to carry out cross-cutting analysis and prepare for the use of AI technologies.

Digital technologies

Automation of processes and activities is the first step towards modernization and digitization (digital tools, robots, IoT and etc.)

Sustainable goals

Priority for all applications of advanced technologies (including AI) should be SDG-oriented.

Impacts

PHASES	1. ECONOMIC	2. SOCIAL	3. ENVIRONMENTAL
Growing	Precision agriculture allows early prognosis, faster more accurate decisions, self-monitoring.	Precision agriculture allows to ensure more healthy food products, increase quality	Precision farming can improve sustainability through more efficient use of land, water, fuel.
Food production	Robotics and Automation in the food Industry can increase quality, save time and space	Robots useful for Health and Safety issues as they can be adapted to work in extreme conditions, e.g. very hot temperature.	S&S food production methods can reduce negative environmental externalities
Distribution	Autonomous food delivery attempts to address growing industry trends	Smart logistics enables a wider range of fresh products in a convenient and fast way	Smart logistic enables optimal food delivery routes and methods, thus reducing street traffic level
Retail	Digital and smart solutions allows , improve sales efficiency providing self-service options	Digital and smart solutions allows collect data and provide more flexibility, personalized service	Smart renewables and carbon offsets allows to reduce a store's environmental footprint
Food services	Smart apps gives more business opportunities and save costs	Smart apps make it easier to order and deliver food,	S&S based food delivery can positively impact the environment: waste and emissions.
Consumption	Optimizing and predicting food consumption leads to less food waste	AI based nutrition apps can people monitor and manage their health	Intelligent food planning and consumption systems leads to less food waste
Waste management	Advanced waste recycling solutions to recover useful materials and efficiently use for energy generation	Advanced recycling solutions create new jobs in the sector, increases community responsibility	Advanced recycling solutions create new jobs in the sector,

The case of Lithuania

	Strategy & Policy recommendations	Sustainable mindset	Technological awareness	Data management	Digital Al technologies	Sustainable goals
Growing			•••	•••	•••	
Food production				•••		•••
Distribution						
Retail						
Food services	•••				•••	
Waste management				•••	•••	

Smart & Sustainability Maturity Assessment

Scoring In Lithuania Food Systems

Some metrics considered

	Carbon fo	arbon footprint			02	03	04	
ability	Waste generation			01	02	03	04	
Maturity on Sustainability goals	Renewable power production			01	02	03	04	
urity on g		Investment on environmental conservation		01	02	03	04	
Mat	•••	•••						
	Income from environmer			01	02		04	
-								
	Data m	anagemen	t	01	02	03	04	
r IA br		anagemen zation level	t 	0 1 01	02 02	03 03	04	
turity on ation and Al	Digitaliz		t 					
Maturity on digitalization and Al	Digitaliz Al base	ation level d solutions ents on mod		01	02	03	04	
Maturity on digitalization and Al	Digitaliz Al base Investm	ation level d solutions ents on mod		01	02 02	03 03	04 04	